Ranked bandits in metric spaces: learning diverse rankings over large document collections

نویسندگان

  • Aleksandrs Slivkins
  • Filip Radlinski
  • Sreenivas Gollapudi
چکیده

Most learning to rank research has assumed that the utility of different documents is independent, which results in learned ranking functions that return redundant results. The few approaches that avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-to-rank formulation that optimizes the fraction of satisfied users, with several scalable algorithms that explicitly takes document similarity and ranking context into account. Our formulation is a non-trivial common generalization of two multi-armed bandit models from the literature: ranked bandits (Radlinski et al., 2008) and Lipschitz bandits (Kleinberg et al., 2008b). We present theoretical justifications for this approach, as well as a near-optimal algorithm. Our evaluation adds optimizations that improve empirical performance, and shows that our algorithms learn orders of magnitude more quickly than previous approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning optimally diverse rankings over large document collections

Most learning to rank research has assumed that the utility of different documents is independent, which results in learned ranking functions that return redundant results. The few approaches that avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-torank formulation that optimizes the fraction of satisfied users, with a scalable algorith...

متن کامل

Latent Structured Ranking

Many latent (factorized) models have been proposed for recommendation tasks like collaborative filtering and for ranking tasks like document or image retrieval and annotation. Common to all those methods is that during inference the items are scored independently by their similarity to the query in the latent embedding space. The structure of the ranked list (i.e. considering the set of items r...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Correlational Dueling Bandits with Application to Clinical Treatment in Large Decision Spaces

We consider sequential decision making under uncertainty, where the goal is to optimize over a large decision space using noisy comparative feedback. This problem can be formulated as a Karmed Dueling Bandits problem where K is the total number of decisions. When K is very large, existing dueling bandits algorithms suffer huge cumulative regret before converging on the optimal arm. This paper s...

متن کامل

Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the  assumption of normality we establish common fixed point theorems for the generalized quasi-contractions  with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$  in the set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013